Summary & Future directions

06

Complete the loop of **pattern**, **prediction & inference**, **action Interpretation** and **evaluation Generative AI** and **LLM**

Summary of Agent-based Simulation for Modern Web Applications

Simulation objective in the 00's

Complete the loop

Pattern Recognition, Prediction & Inference, and Action are the three pillars of modern web applications and perhaps artificial intelligence (AI).

Agent-based simulation is able to methodically integrating and summarizing concepts and solutions developed throughout history for each component across various problems.

Result Interpretation and evaluation for Agent-based Simulation

An agent has to serve a purpose, how to build an agent with the right amount of description or detail remains an **art** than **science**.

Natural systems have **soft factors** that are difficult to quantify, calibrate, or even justify.

One must not make decisions on the basis of the **quantitative outcome** of an agent-based simulation that are designed purely at the **qualitative level** Outcome correlation with real-world experiments and testings

Reality faithfulness

Complexity of the assumption and hypothesis supported by visible mechanisms from the interventions

Assumption complexity Intervention manipulability

What's Next for Agent-based Simulation?

Employ such as generative adversarial network (GAN) as a feature (or initial states) agent to produce close-to-real distributions

 \bigcirc

Remark: considered as an alternative to the causal-structure-based simulation

Large language models pre-trained on whole-web data exhibit remarkable capacity for in-context learning, enabling them to effectively tackle a diverse array of complex tasks with human-like proficiency. With appropriate set up and prompt engineering, LLM can serve as both **task-specific and generic agents**.

Can we imagine a simulation consists entirely of GenAl agents?

Remark: although the directions presented in this slide have been explored to some extent, there remains much opportunities

Real-world observations could be an agent itself (e.g. reward-model agent), leading to the potentially more **powerful** & **targeted** semi-synthetic analysis

Remark: naturally connects to learning from partial feedback with bandit or RL

 \cap

<

Motivation, Introduction & Scope

Overview

01

02

03

Agent-based Simulation for Modern Web Applications

For Information Retrieval

Web search engine Conversation System

THANK YOU

Does anyone has any questions?

For Recommender System Personalized Recommendation

04

05

06

For Marketing and Advertising

Bidding, Pricing, Ads Allocation

Summary and future directions

Landscape Interpretation, evaluation Generative AI, LLM

Slides and Recordings will be available on our webpage: https://foundation4recsys.github.io/Tutorial-WWW23/

in

THANK YOU

Please feel free to contact us for follow-up and opportunities

daxu5180@gmail.com boyang.emma@gmail.com shuyuan.xu@rutgers.edu

Da Xu

Shuyuan Xu

Bo Yang

References

Stavinova, E., Grigorievskiy, A., Volodkevich, A., Chunaev, P., Bochenina, K. and Bugaychenko, D., 2022.
 Synthetic Data-Based Simulators for Recommender Systems: A Survey. arXiv preprint arXiv:2206.11338.
 Ie, E., Hsu, C.W., Mladenov, M., Jain, V., Narvekar, S., Wang, J., Wu, R. and Boutilier, C., 2019. Recsim: A configurable simulation platform for recommender systems. arXiv preprint arXiv:1909.04847.

[3] Huang, J., Oosterhuis, H., De Rijke, M. and Van Hoof, H., 2020, September. Keeping dataset biases out of the simulation: A debiased simulator for reinforcement learning based recommender systems. In Proceedings of the 14th ACM Conference on Recommender Systems (pp. 190-199).

[4] Shi, J.C., Yu, Y., Da, Q., Chen, S.Y. and Zeng, A.X., 2019, July. Virtual-taobao: Virtualizing real-world online retail environment for reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 4902-4909).

[5] McInerney, J., Elahi, E., Basilico, J., Raimond, Y. and Jebara, T., 2021, September. Accordion: a trainable simulator for long-term interactive systems. In Proceedings of the 15th ACM Conference on Recommender Systems (pp. 102-113).

[6] Kalimeris, D., Bhagat, S., Kalyanaraman, S. and Weinsberg, U., 2021, August. Preference amplification in recommender systems. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 805-815).

[7] Yao, S., Halpern, Y., Thain, N., Wang, X., Lee, K., Prost, F., Chi, E.H., Chen, J. and Beutel, A., 2021. Measuring recommender system effects with simulated users. arXiv preprint arXiv:2101.04526.

References

[8] Zhang, Shuo, and Krisztian Balog. "Evaluating conversational recommender systems via user simulation." *Proceedings of the 26th acm sigkdd international conference on knowledge discovery & data mining*. 2020.
[9] Maxwell, David, and Leif Azzopardi. "Simulating interactive information retrieval: Simiir: A framework for the simulation of interaction." *Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval*. 2016.

[10] Schatzmann, Jost, et al. "Agenda-based user simulation for bootstrapping a POMDP dialogue system." *Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers*. 2007.

[11] Zerhoudi, Saber, et al. "The SimIIR 2.0 Framework: User Types, Markov Model-Based Interaction Simulation, and Advanced Query Generation." *Proceedings of the 31st ACM International Conference on Information & Knowledge Management*. 2022.

[12] Jeunen, Olivier, et al. "A probabilistic framework to learn auction mechanisms via gradient descent." (2023).

References

[13] Jeunen, Olivier, Sean Murphy, and Ben Allison. "Learning to bid with AuctionGym." (2022).
[14] Bayir, Murat Ali, et al. "Genie: An open box counterfactual policy estimator for optimizing sponsored search marketplace." Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. 2019.
[15] Weinan Zhang, Shuai Yuan, and Jun Wang. Optimal real-time bidding for display advertising. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1077–1086. ACM, 2014.

[16] Wang, Jun, Weinan Zhang, and Shuai Yuan. "Display advertising with real-time bidding (RTB) and behavioural targeting." Foundations and Trends in Information Retrieval 11.4-5 (2017): 297-435.