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Summary of Agent-based Simulation for 
Modern Web Applications

Complete the loop
Pattern Recognition, Prediction & Inference, and 
Action are the three pillars of modern web 
applications and perhaps artificial intelligence (AI).

Agent-based simulation is able to methodically 
integrating and summarizing concepts and solutions 
developed throughout history for each component 
across various problems.
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Agent-based simulation

Simulation objective in the 00’s

Simulation objective in the 10’s

Generate Data
Apply ML

Policy design
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Simulation objective in the 20’s +



Result Interpretation and evaluation 
for Agent-based Simulation

An agent has to serve a purpose, 
how to build an agent with the right 
amount of description or detail 
remains an art than science.

Reality faithfulness

Outcome correlation with real-world 
experiments and testings

Natural systems have soft factors 
that are difficult to quantify, 
calibrate, or even justify.

One must not make decisions on 
the basis of the quantitative 
outcome of an agent-based 
simulation that are designed purely 
at the qualitative level

Assumption complexity
Intervention manipulability

Complexity of the assumption and 
hypothesis supported by visible 

mechanisms from the interventions



What’s Next for Agent-based 
Simulation?

Remark: although the directions presented in this 
slide have been explored to some extent, there 

remains much opportunities

Employ such as 
generative 
adversarial network 
(GAN) as a feature 
(or initial states) 
agent to produce 
close-to-real 
distributions

Real-world 
observations could 
be an agent itself 
(e.g. reward-model 
agent), leading to 
the potentially more 
powerful & targeted 
semi-synthetic 
analysis

Large language models pre-trained on whole-web 
data exhibit remarkable capacity for in-context 
learning, enabling them to effectively tackle a 
diverse array of complex tasks with human-like 
proficiency. With appropriate set up and prompt 
engineering, LLM can serve as both task-specific 
and generic agents.

Can we imagine a simulation consists entirely of 
GenAI agents? 

Remark: considered as an 
alternative to the 

causal-structure-based 
simulation

Remark: naturally connects to 
learning from partial feedback 

with bandit or RL
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For Information 
Retrieval

Web search engine
Conversation System

For Recommender 
System
Personalized Recommendation

For Marketing and 
Advertising
Bidding, Pricing, Ads Allocation

Summary and future 
directions
Landscape
Interpretation, evaluation
Generative AI, LLM

Does anyone has any questions?



CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, and infographics & images by Freepik. 
Please keep this slide for attribution.

Please feel free to contact us for follow-up and opportunities

daxu5180@gmail.com
boyang.emma@gmail.com 
shuyuan.xu@rutgers.edu

THANK YOU

Da Xu Shuyuan Xu Bo Yang

Slides and Recordings will be available on our webpage:
https://foundation4recsys.github.io/Tutorial-WWW23/

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:daxu5180@gmail.com
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