Complete the loop of pattern, prediction & inference, action
Interpretation and evaluation
Generative Al and LLM
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Complete the loop

Pattern Recognition, Prediction & Inference, and
Action are the three pillars of modern web
applications and perhaps artificial intelligence (Al).

Agent-based simulation is able to methodically
integrating and summarizing concepts and solutions
developed throughout history for each component
across various problems.

Simulation objective in the 00's

_—

Patterns

Generate Data
Apply ML

Optimization
Causal analysis

Agent-based simulation

: Prediction
Action - -
Policy design Inference

\ Intervention /

Simulation objective in the 20's +

Simulation objective in the 10's



\ |

\\ = ~— Nl
72 N = 2
A N ji
— .

S

Result Interpretation and evaluation
for Agent-based Simulation

An agent has to serve a purpose,

how to build an agent with the right

amount of description or detail

remains an art than science. Outcome correlation with real-world
experiments and testings

Reality faithfulness
Natural systems have soft factors

that are difficult to quantify,

calibrate, or even justify.

Complexity of the assumption and

» hypothesis supported by visible
One must not make decisions on

. . mechanisms from the interventions
the basis of the quantitative

outcome of an agent-based ASSUTPPtiO" c_omple.x!ty
simulation that are designed purely Intervention manipulability
at the qualitative level




N What's Next for Agent-based L
Simulation?

Large language models pre-trained on whole-web
data exhibit remarkable capacity for in-context
learning, enabling them to effectively tackle a
diverse array of complex tasks with human-like
proficiency. With appropriate set up and prompt
engineering, LLM can serve as both task-specific
and generic agents.

Real-world
observations could
be an agent itself
(e.g. reward-model
agent), leading to

Employ such as
generative
adversarial network
(GAN) as a feature

Can we imagine a simulation consists entirely of
GenAl agents?

(or initial states)
agent to produce
close-to-real
distributions

the potentially more
powerful & targeted
semi-synthetic
analysis

Remark: considered as an Remark: although the directions presented in this Remark: naturally connects to
alternative to the slide have been explored to some extent, there learning from partial feedback
causal-structure-based remains much opportunities with bandit or RL

simulation



Opening remark
Motivation, Introduction & Scope

Overview

Agent-based Simulation for
Modern Web Applications

For Information
Retrieval

Web search engine
Conversation System
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THANKYOU

Does anyone has any questions?
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For Recommender
System

Personalized Recommendation

For Marketing and
Advertising
Bidding, Pricing, Ads Allocation

Summary and future
directions

Landscape
Interpretation, evaluation
Generative Al, LLM



’ S Slides and Recordings will be available on our webpage:
‘ https://foundation4recsys.github.io/Tutorial- WWW23/

Please feel free to contact us for follow-up and opportunities

. ‘ daxu5180@gmail.com
5 " boyang.emma@gmail.com y
shuyuan.xu@rutgers.edu .;7:”



http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:daxu5180@gmail.com
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